Scientists have created the coldest conditions ever recorded, reaching just 38 trillionth of a degree warmer than absolute zero.
While researching the wave properties of atoms, experts from the University of Bremen produced one of the 'coldest places in the universe' for a few seconds in the lab.
Absolute zero - zero Kelvin, or -459.67°F - is the point at which atoms have no energy and don't move, and is the coldest temperature it is theoretically possible to reach.
To get as close to this point as possible, the team manipulated a cloud of atoms to a point where it was at a 'virtual standstill.'
For a few seconds these particles were so still the temperature lowered to 38 picokelvins (pK), which is 38 trillionth of a degree above absolute zero.
The team says this could have significant ramifications for our understanding of quantum mechanics, as the colder the temperature, the more peculiar matter acts.
Absolute zero is the coldest temperature it is theoretically possible to reach, based on the laws of thermodynamics. It is zero Kelvin, or -459.67 degrees Fahrenheit
To achieve the remarkably low temperature, the German team developed a process that lowered a system's temperature by slowing particles to the point they came to a near total standstill.
This is such a low temperature there are no thermometers that can detect it, so they base the measurement on the lack of kinetic movement of the observed particles.
The mechanism used to detect the temperature is known as a 'time-domain matter-wave lens system,' and can see matter behaving like a wave.
To study these waves the team used a magnetic lens that allowed them to shape a quantum gas and used it to make a focused matter wave they could control and ensure behaved in a specific way.
Unlike regular gas, made of a loose arrangement of particles, quantum gas is much less predictable, also known as a Bose-Einstein condensate.
'By combining an excitation of a Bose-Einstein condensate (BEC) with a magnetic lens, we form a time-domain matter-wave lens system,' the researchers wrote.
'The focus is tuned by the strength of the lensing potential. By placing the focus at infinity, we lower the total internal kinetic energy of a BEC to 38 pK.'
The BEC is generated in a magnetic trap, after which the trap is switched off, and the gas initially expands in all three spatial directions.
A magnetic lens has already been able to slow down this expansion and collimate the matter wave in the past, but it only worked in two directions.
Scientists created the coldest conditions ever recorded, reaching just 38 trillionth of a degree warmer than absolute zero, which is the coldest temperature possible
However, this is the first time that researchers have been able to stop the expansion in the third direction as well.
The researchers say future experiments could make the particles get even slower, and last at that point for up to 17 seconds, allowing for more detailed study.
The findings have been published in the journal Physical Review Letters.
Post a Comment